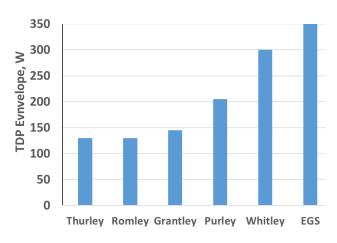
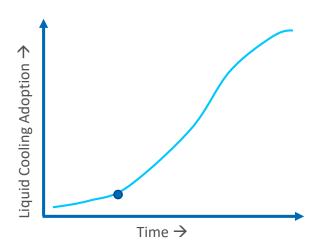


Intel Open IP 浸沒式冷卻參考設計

供應鏈的驗證整合與合作分享

Supply Chain Integration, Validation and Collaboration


Carrie Chen Intel SMG Taiwan
Dr. Justin Wu Intel SMG Taiwan
Jun Zhang Intel CESG PE


Agenda

- Liquid Cooling Key Drives & Forecast
- Advanced Cooling Solutions Journey
- Open IP Immersion Cooling Roadmap Update
- 2023 Goal
 - 4U deployment kit update
 - Edge AAIC solutions
 - Synthetic Oils continuous work in progress
 - Innovated immersion cooling server heat sink
 - Optical AOC for immersion cooling update
- Ecosystem Collaboration
- Call to Action

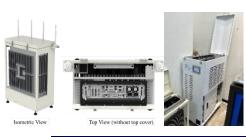
Drivers of Liquid Cooling


Component Power

Sustainability and Regulatory

Gains in power usage efficiency have stalled during the past decade.

'A measure that shows the amount of power used by the computing equipment in a data center relative to its total energy consumption. The closer PUE is to 1, the more efficient a data center's power usage is.

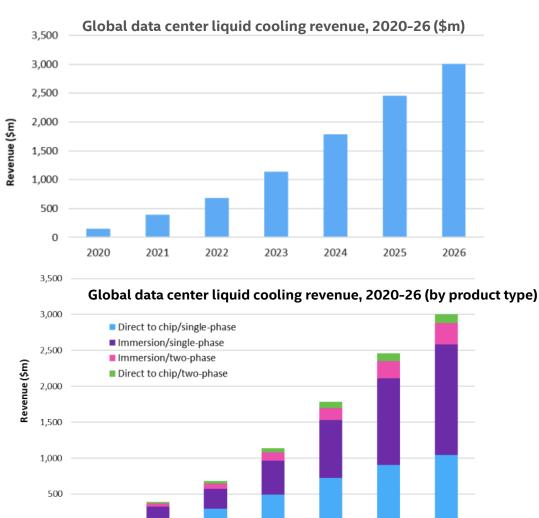

Suprecil ledition in effitt to Inclination.

McKinsey & Company

Recent Examples of Legislation to Reduce Environmental Impact				
Amsterdam	PUE* limits on data centers			
	Moratorium on new licenses until environmental			
	impact assessed – city wants heat re-use			
Singapore	Restrictions on new builds due to land use, energy			
Santa Clara, CA	 On-site generation must use non-fossil fuels 			
Shanghai	New data centers must have PUE* 1.3 or less			
European Union	New rules governing server energy use when idle, thermal reporting and recyclability			

^{*} PUE – Power Usage Effectiveness Source: Uptime Institute Intelligence, October 2018

Edge Growth



Data Center Liquid Cooling Forecast

- Omdia market forecast data center thermal management market revenue to grow at a 17.5% CAGR from 2021 – 2026, on track to reach \$11.6bn
- Liquid cooling market revenue to top \$3bn (to cool 26% server TAM) by 2026
- By 2026, immersion liquid cooling will represent more than 60% of data center liquid cooling revenue

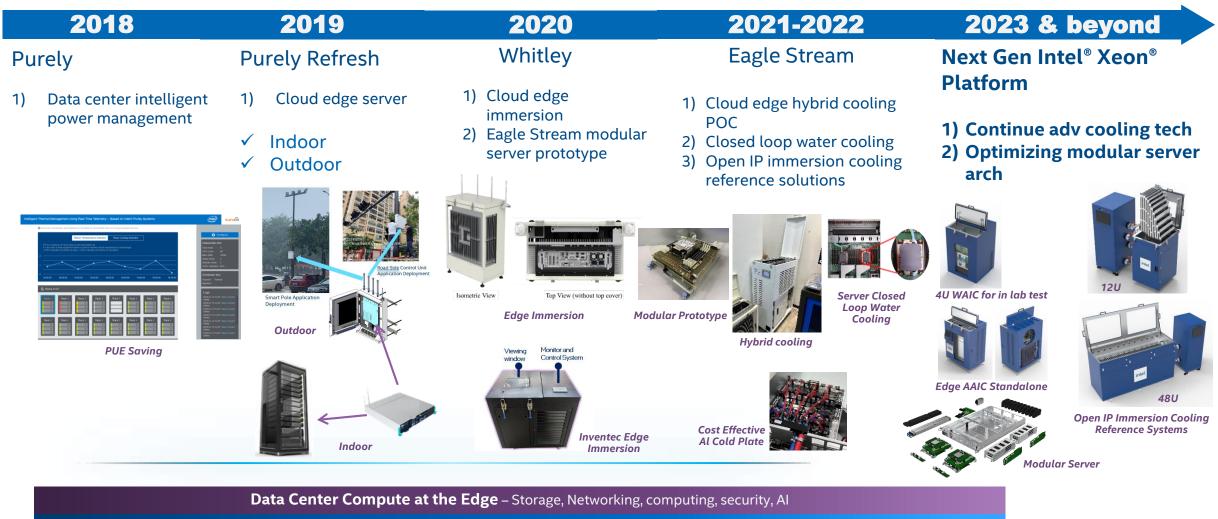
	2020	2021	2022	2023	2024	2025	2026	CAGR 2021– 26
Total data center thermal management	4,390	5,187	6,096	7,152	8,481	10,008	11,611	17.50%
Liquid cooling	152	391	679	1,134	1,781	2,457	3,005	50.40%
Liquid cooling to total ratio	3.50%	7.50%	11.10%	15.90%	21.00%	24.50%	25.90%	

Source: Omdia

2023

2024

2025


2022

2021

2020

2026

Advanced Cooling Solutions Journey

Modular Architecture -- regardless server form factor & cost effective

Advanced cooling -— air cooling alternatives

All product plans and roadmaps are subject to change without notice.

Advanced Cooling Roadmap

Cloud Edge Adv Cooling

Hybrid Cooling Capacity ~1kW

- Xeon SP server extended temp & IP65
- Data Center compute at the edge for AI inference
- Air, water, and Immersion

Open IP Single Phase Immersion Cooling Ref Solutions

Phase 1-TDP 500W

- Xeon SP modular architecture
- Tank uniform flow field design & modular scalable
- CDU redundant features
 & monitoring system

Cloud Edge & Open IP Single Phase Enhanced

Phase 2 TDP 700W

- Phase 1 features plus
- Innovated heat dissipation efficiency
- Optimal for Xeon SP liquid cooling SKU
- Data center digital twins intelligent management

Open IP Single Phase Enhanced Next Gen

Phase 3 TDP 800W+

- Phase 2 features plus
- Advanced heat dissipation efficiency
- Heat recovery energy management

Open IP Two Phase Liquid Cooling

TDP >1000W

- New Coolant immersion cooling development
- Two Phase Cold
 Plate total solutions

All product plans and roadmaps are subject to change without notice.

Intel Open IP Immersion Cooling Server Deployment Kit

- 4U@10 kW Water Assisted Immersion Cooling (WAIC)
- In Lab Validation Server, Coolant, & Material Compatibility
- Single Phase-Product Brief 4U
 - Now on Intel.com, ID: 765932
- User guide on Intel.com soon
 - Installation and operation
 - Validated partner solutions updates

- Current Intel Open IP immersion cooling Collaboration Partner
 - OxM: Foxconn, Inventec, Compal, UfiSpace, Accton (server & switch in tank design, validation & debug...)
 - CSP: OPPO, Softbank, KDDI
 - Coolant: Dow, FastCool, Perstorp, Chevron (coolant reliability, server cable compatibility, grease compatibility...)
 - HSK supplier: Mandala (sample available), Microloops, Forcecon, Auras, Cooler Master (design concept)
 - Optical module AOC: Formerica, JPC (sample available)

Intel Open Ip Immersion Cooling Edge to Data Center

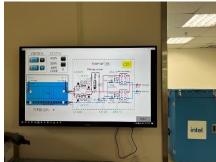
4U@7 kW and 2U@3 kW Air Assisted Immersion Cooling (AAIC)

- Agile for DC Workload Tuning with Immersion Cooled Server and Xeon Based Processors
- For Cloud Edge Immersion Cooling System Ready for Production

4U@7 kW AAIC

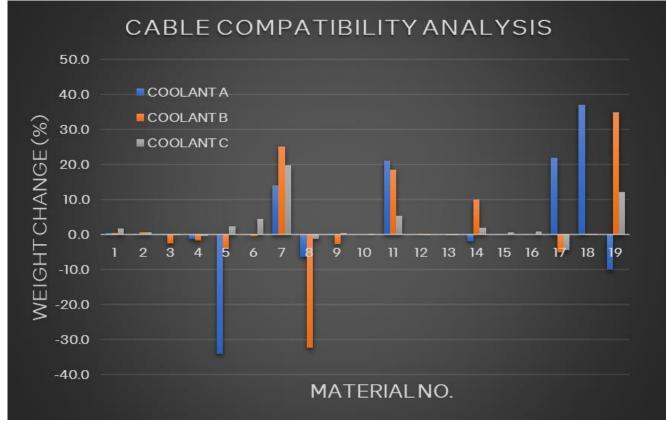
2U@3 kW AAIC

Synthetic Oils Continuous Work in Progress

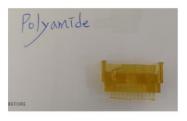

Material Compatibility

- Safety Requirements for Data Center Deployment
 - Flash point safety certification by 3rd party lab
 - Integrated IDC safety management
- Synthetic Oil Life Cycle

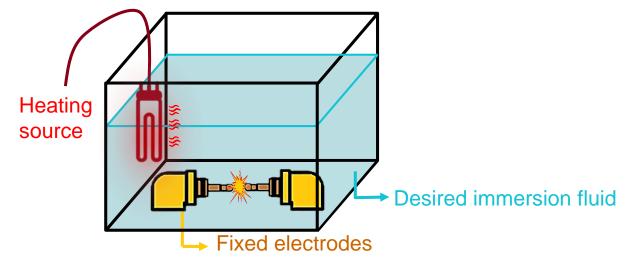
Intel Open IP Test Environment



Evaluating material compatibility in synthetic oils with Intel Open IP immersion cooling system


Key Components for Immersion Cooling: Material Compatibility

_					
	Aging for Coolant A, B, and C				
No	Cable Material				
1	PBT+LCP+Gold & Tin plated terminal				
2	PA66+Gold plated terminal				
3	PCB FR4				
4	PA66				
5	Polyester Fabric & Acrylic Glue				
6	PET				
7	Ethylene-vinyl acetate copolymer + flame retardant				
8	Teflon				
9	Stainless steel				
10	Nickel-plated stainless steel				
11	Polyamide				
12	PBT (halogenated)				
13	PBT (Halogen Free)				
14	PVC				
15	Gold plated terminal				
16	Tin plated terminal				
17	PVC+Cu				
18	FKM				
19	EPDM				


- Cycling tests for coolant composition analysis
- Cable material alternatives or coolant tuning

工業技術研究院 Industrial Technology Research Institute Material and Chemical Research Laboratories(MCL) Electronic and Optoelectronic System Research Laboratories (EOSL)

Coolant Safety & Life Cycle

Safety Verification POC

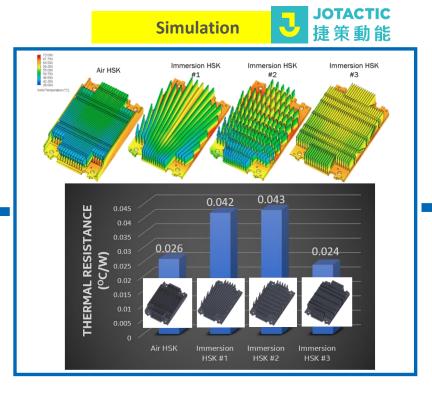
- Place controlled heating source that can generate very high temperature instantaneously
- 2. The electrodes are installed in the test container and a spark is generated by applying a momentary high voltage
- 3. Repeat the experiment several times to confirm reproducibility and stability

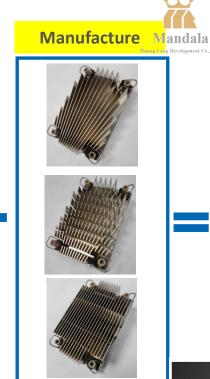
Coolant Working-Life Monitoring

- 1. Periodic testing of coolant properties is required.
- Important test item: color, viscosity, dielectric constant, loss tangent, acidity, specific heat capacity, flash point, break down voltage...etc.

Plan for Third-party Verification Service

- Test item: viscosity, acidity, specific heat capacity, flash point (open/closed cup), pour point, thermal conductivity, break down voltage, dielectric constant (1 · 10GHz), loss tangent (1 · 10GHz), metal composition analysis, thermogravimetric analysis, volume resistance, surface tension.
- Immersion Coolant Compatibility Aging safety


Integrated IDC Safety Management - Demo



Combine Coolant Safety & IDC Management to Meet the Deployment Criteria

Innovated Immersion Cooling Server Heat Sink

Intel HSK Design Concept Fluorinated fluid simulation parameters Thermal conductivity 0.065 W/mK Density 1855 kg/m³ Absolute viscosity 4.1 centipoise Specific heat 1100 J/kgK

Foxconn Industrial

Output

- IEEE, joint white paper
- HSK design guide
- Sample ready for verification
- Calibrate simulation parameters

Case Study: Synthetic oil, Kinematic Viscosity: 35 mm²/s @ 40 °C

Key Components for Immersion Cooling: Active Optical Cable (AOC) Solution

AOC Transceiver Rosa MCU IC PCB Tosa After the device is assembled to the module, the 2nd layer of glue is applied to the entire optical device and PCBA. The adhesive is resistant to water and prevents contact of fluorine from immersing (except on the contacts).

Advantages Sealing Technology

- Complete protection against water and fluorine
- The optical cable is halogen-free and corrosion-resistant
- Supports direct immersion or spraying
- The seal can effectively block cooling liquid from entering the optical circuit, with no adverse affects on the optical circuit

Validating in Intel Open IP immersion cooling system

Ecosystem Collaboration

Grow the community

Step 1 → Ecosystem partners joint validation

Step 2 → Partner solutions validated for Intel's Open IP Immersion Cooling

Step 3 → Customer's own solution for Intel's Open IP immersion cooling compatible

Intel's Open IP Immersion Cooling Reference Solutions – Single Phase - 4U

User Guide

April 2023

Revision 1.0

Ecosy	ystem Collaboration41
7.1	Community of Intel's Open IP Immersion Cooling41
7.2	Partner Solutions Validated with Intel's Open IP Immersion Cooling . 41
7.3	Customer's Own Solution for Intel's Open IP Immersion Cooling
	Compatible43,

Ecosystem Collaboration

7.1 Community for Intel's Open IP Immersion Cooling

Intel is launching Open IP immersion cooling solutions and reference design, collaborating with ecosystem partners to meet the industry needs and create a three-win situation among Intel, ecosystem partners and the environment.

The community is to activate the entire ecosystem, and to accelerate the real deployment to meet energy saving and carbon reduction. The community welcome the ecosystem partner solutions adopt Intel Open IP immersion cooling reference design for joint validation.

Figure 7.1-1. Intel's Open IP Immersion Cooling Community

7.2 Partner Solutions Validated for Intel's Open IP Immersion Cooling

Intel Open ecosystem to ecosystem partners collaboration for validated & proven partners solutions ready to meet end customer's requirements. The table provides with the information for server and key components that have been verified with Intel Open IP immersion cooling reference systems.

This table will continue to be maintained to expand the cooperation of the ecosystem.

Table 7-2. Server System information

Server System				
Company	Description	Part Number	Remark	
Compal	Eagle Stream	SR120-2		
Foxconn	Eagle Stream	D-5222		
Inventec	Eagle Stream	K880G6		

Table 7-3. Key Component Solution Information

Table 7-3. Key Component Solution Information					
Key Component					
Company	Description	Part Number	Remark		
Acer Synergy Tech Corp	System integration Provider				
DOW	DOWSIL	Experimental candidate	Long term required for Safety & Life Cycle		
PERSTORP	POE	Experimental candidate	Long term required for Safety & Life Cycle		
Chevron	PAO	Control candidate			
Mandala	4U10kW WAIC	A19I04W10D0100A			
	12U15kW WAIC	A19I12W15D0100A			
	48U60kW WAIC	A19I48U60D0100A			
	2U3kW AAIC	A19I02W03D0100A			
	4U7kW AAIC	A19I007D0100A			
Switch Providers			To be updated		
Mandala	Convex-louver heat sink module	A13HE01A0209Z			
Mandala	Convex-louver fin	A13HEA1A0100Z			
Optical Cable Providers			To be updated		

Call to Action

Let's work together to

- Develop liquid cooling solutions for optimum power usage, lower PUE, and better TCO
- Build partner solutions to accelerate ecosystem readiness

#